Ludwig-Maximilians-Universität München
print

Links und Funktionen
Sprachumschaltung

Navigationspfad


Inhaltsbereich

Data Science (Master)

Studiengang

Studiengang: Data Science (Master)
Abschluss: Master
Abschlussgrad: Master of Science (M.Sc.)
Fachtyp: Hauptfach
Studienform: Weiterführendes Studium mit berufsqualifizierendem Abschluss
Studienbeginn: Das Studium kann nur im Wintersemester begonnen werden.
Regelstudienzeit: 4 Fachsemester
Fakultät:
Fächergruppe:
entspricht "Key Features" des ECTS: Der Studiengang entspricht den von der EU-Kommission definierten "Key Features" des ECTS.
Diploma Supplement: Nach erfolgreichem Abschluss des Studienganges wird ein Diploma Supplement ausgestellt.
Beiträge:

Die Universität erhebt für das Studentenwerk München den Grundbeitrag in Höhe von 62 Euro sowie den Solidarbeitrag Semesterticket in Höhe von 67,40 Euro.

Anmerkung: Ein-Fach-Masterstudiengang mit 120 ECTS.

nach oben

Bewerbung und Zulassung

nach oben

Beschreibung des Studienfachs

Data Science is the science of extracting knowledge and information from data and requires competencies in both statistical and computer-based data analysis. The elite program Data Science is an interdisciplinary program and is carried out jointly by the Department of Statistics and the Institute for Informatics at LMU Munich. The program is part of and is supported by the Elite Network of Bavaria.

The curriculum of the elite master program Data Science is a modularised study program. Students learn statistical and computational methods for collecting, managing, and analysing large and complex data sets and how to extract knowledge and information from these data sets. The program also comprises courses on data security, data confidentiality, and data ethics. In the practical modules students will tackle real-world problems in cooperation with industrial partners. Other highlights of the program are the summer schools and the focused tutorials.

 

Studienaufbau / Module

The curriculum of the elite master program Data Science is a modularised study program. Students learn statistical and computational methods for collecting, managing, and analysing large and complex data sets and how to extract knowledge and information from these data sets. The program also comprises courses on data security, data confidentiality, and data ethics. Other highlights are the practical modules in which students will tackle real-world problems in cooperation with industrial partners, as well as summer schools and tutorials, and the DataFest. With this training graduates of the master program will be innovative and responsible academics with excellent career opportunities both in industry and economy as well as in science and research.

Highlights of the Curriculum

Methodological as well as practical modules.Courses on data security, data confidentiality, and data ethics.Training of transferable skills.Close cooperation with industrial partners.

Nebenfächer

Beim Masterstudiengang "Data Science" handelt es sich um einen Ein-Fach-Masterstudiengang, bei dem keine Nebenfächer studiert werden.

Tätigkeits- und Berufsfelder

Upon graduation our students are well prepared for a career as a data scientist in the private or public sector in fields such as applied economics, political science, sociology, education, medicine, public policy, and media research. Students may also pursue a doctoral study in a variety of academic disciplines that require quantitative analysis.

nach oben

Voraussetzungen und Anforderungen

Zugangsvoraussetzung

  • Bachelor of Science (or equivalent) in Statistics or Informatics or related disciplines (at least 180 ECTS or equivalent)
  • Excellent knowledge in Informatics and Statistics.
  • Proficiency in English

Eignungsprüfung

The application process has two stages:

1. Online application

until the 1st of june

2. Interview

If your online application is successful you will be invited to an interview.

Unterrichtssprachen

English

Erwünschtes Profil

Applicants need to provide evidence of knowledge in Data-based modelling: this includes, for example, statistics, data mining, probability theory, machine learning (at least 30 ECTS or equivalent); and Computational Methods: this includes, for example, informatics, database-oriented methods, computational statistics, optimisation procedures (at least 30 ECTS or equivalent).

Angebote zur Studienorientierung

nach oben

Ansprechpartner

Adresse des Fachs

Sprechstunden, Aushänge, Änderungen des Lehrangebots

Ludwig-Maximilians-Universität München
Institut für Statistik
Ludwigstraße 33
80539 München
Internet: www.statistik.lmu.de

Fachstudienberatung

Inhaltliche und spezifische Fragen des Studiums, Studienaufbau, Stundenplan, fachliche Schwerpunkte

Ansprechpartner der Fachstudienberatung Master Data Science:
www.m-datascience.mathematik-informatik-statistik.uni-muenchen.de/contact

nach oben

Stand: 03.08.2017