Ludwig-Maximilians-Universität München
print

Links und Funktionen
Sprachumschaltung

Navigationspfad


Inhaltsbereich

Zellbiologie

Neues aus der Welt der Mikrotubuli

München, 02.07.2012

In jeder Sekunde finden in unserem Körper rund 25 Millionen Zellteilungen statt. Hauptverantwortlich dafür sind zelluläre Filamente, die kontinuierlich wachsen und schrumpfen. Eine aktuelle Studie zeigt, wie Motor-Proteine diese Dynamik kontrollieren.

Das Skelett einer Zelle (Zytoskelett) besteht vorwiegend aus Filamenten, sogenannten Mikrotubuli. Es bestimmt viele Eigenschaften einer Zelle wie deren Größe, Form oder Struktur. Neben diesen statischen Aufgaben ist das Zytoskelett aber auch maßgeblich an dynamischen Prozessen wie der Zellteilung beteiligt. Für eine Zelle ist es daher essentiell, die Länge der Mikrotubuli den momentanen Erfordernissen entsprechen regulieren zu können.

Vom Wachsen und Schrumpfen

Diesen Regulationsmechanismus haben der LMU-Biophysiker Erwin Frey und seine Mitarbeiter Anna Melbinger und Louis Reese anhand eines theoretischen Modells näher unter-sucht und einen zunächst überraschenden Zusammenhang entdeckt: Die aktuelle Länge eines Filaments bestimmt mit, ob es wächst oder schrumpft. Dahinter steckt folgende Idee: Je länger das Filament ist, desto mehr Motor-Proteine aus dem Zytosol können daran binden. Sie alle wandern zu dem sogenannten Plus-Ende des Mikrotubulus und häufen sich dabei immer mehr an. Am Ende angekommen starten die Motor-Proteine den Abbau des Mikrotubulus .

 

Parallel binden an genau dieses Plus-Ende neue Mikrotubuli-Bausteine aus dem um-gebenden Cytosol und das Filament wächst. Um das dynamische Gleichgewicht von Ab- und Aufbau zu berechnen, haben die Autoren eine Reihe relevanter Faktoren einbezogen. Dazu gehören die Konzentration der Motorproteine und deren molekulare Eigenschaften. Alles zusammen genommen zeigt einen Mechanismus auf, mit dem eine Zelle die Länge ihrer Mikrotubuli dynamisch und dabei sehr präzise einstellen kann. Auf diese Weise beeinflusst sie vermutlich eine Reihe intrazellulärer Aufgaben, die über eine bestimmte Mikrotubuli-Länge geregelt sind. (Phys.Rev.Lett. 2012)        göd

Die Arbeit wurde unterstützt durch das Exzellenzcluster „Nanosystems Initiative Munich (NIM)” und den Sonderforschungsbereich SFB 863 „Forces in Biomolecular Systems“.

 

Weitere Informationen:

 

 

 

Verantwortlich für den Inhalt: Kommunikation und Presse