Ludwig-Maximilians-Universität München
print

Links und Funktionen
Sprachumschaltung

Navigationspfad


Inhaltsbereich

Quantentunneln im Kollektiv

München, 19.10.2010

Quantensysteme verhalten sich oft anders, als es unsere Intuition und unsere alltäglichen Erfahrungen vermuten lassen. Ein Beispiel dafür ist das sogenannte Landau-Zener Problem aus der Quantenmechanik. Es beschreibt unter anderem das Tunneln eines Quantenteilchens zwischen zwei Potentialtöpfen, deren anfänglich großer Energieunterschied durch langsames Verschieben der Niveaus allmählich umgekehrt wird. Der russische Physiker Lew Landau und der amerikanische Physiker Clarence Zener haben diese Fragestellung bereits 1932 in einem allgemeineren Kontext untersucht. Dabei fanden sie heraus, dass das Teilchen, unabhängig von seiner Ausgangslage, das Töpfchen durch Tunneln wechselt, vorausgesetzt, die Umkehr des Energieunterschiedes vollzieht sich langsam genug. Im Gegensatz zu klassischen Flüssigkeiten, die unabhängig von ihrer Ausgangslage stets in das tiefere Töpfchen fließen würden, endet ein Quantenteilchen, das seine Wanderung im höher liegenden Töpfchen beginnt, wieder im höheren – ursprünglich gegenüberliegenden – Töpfchen. Physiker um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München und Direktor am Max-Planck-Institut für Quantenoptik) haben nun in Zusammenarbeit mit Theoretikern des Weizmann Institute of Science (Rehovot, Israel) entsprechende Untersuchungen an einem eindimensionalen System aus vielen Quantenteilchen durchgeführt. Dabei machten sie die Beobachtung, dass aufgrund der Wechselwirkungen zwischen den Atomen das Tunneln dramatisch beeinflusst werden kann und, im Gegensatz zu unserer Intuition, ein langsameres, kontrolliertes Ändern der Parameter zu einem Zusammenbrechen des Tunnelns führt. (Nature Physics, AOP, 17.10.2010, DOI: 10.1038/NPHYS1801)

Verantwortlich für den Inhalt: Kommunikation und Presse